First-Principle Studies on the Gas Phase OH-initiated Oxidation of O-Toluidine

2019 
Abstract In the present work, the gas phase reaction of OH radical initiated O-toluidine (OTOD) oxidation is investigated at ROCBS-QB3. Different pathways for OH radical additions to the benzene ring sites and H-atom abstractions are explored in details. At 200 K, the oxidation mechanism of OTOD is thoroughly dominated by the OH-addition to the aromatic ring, whereas the main favorable route is the OH addition to C2 atom with a branching ratio of 52.76%. Raising temperature to 1000 K, the total abstraction of amine's hydrogens becomes the main oxidation pathway for OTOD with contributions of 29.29%. The atmospheric lifetimes of aniline and OTOD are calculated to be 20.74 and 11.23 min., respectively. The fate of OTOD-OH2 (P2) adduct with atmospheric O2 molecule is inspected using the unimolecular Rice-Ramsperger-Kassel-Marcus (RRKM-ME) to verify our results at transition state theory (TST) and shows pressure and temperature dependence of the secondary oxidation mechanism.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    10
    Citations
    NaN
    KQI
    []