Slit2 signaling contributes to cholestatic fibrosis in mice by activation of hepatic stellate cells

2019 
Abstract Liver Cholestasis is a widespread disease of broad etiologies and ultimately results in fibrosis, which is still lacking effective therapeutic strategies. Activation of hepatic stellate cells (HSCs) is the key event of liver fibrosis. Here, we aimed to investigate the effect and mechanism of the Slit2 signaling in cholestasis-induced liver fibrosis. Our findings revealed that the serum levels and hepatic expression of Slit2 were significantly increased in patients with primary biliary cirrhosis (PBC). Additionally, Slit2-Tg mice were much more vulnerable to BDL-induced liver injury and fibrosis compared to WT control. Slit2 up-regulation by Slit2 recombinant protein induced proliferation, and inhibited apoptosis of human HSCs cell line LX-2 via p38 and ERK signaling pathway, resulting in the activation of HSCs. In contrast, Slit2 down-regulation by siRNA silencing inhibit the activation of HSCs. In conclusion, Slit2 is involved in the activation of HSCs and liver fibrogenesis, highlighting Slit2 as a potential therapeutic target for liver fibrosis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    2
    Citations
    NaN
    KQI
    []