Compositional dependence of properties and lens performance of As-Se chalcogenide glass

2017 
The market for thermal imaging sensors and cameras has been increasingly focused on higher volumes and lower costs. Precision glass molding (PGM) is a high volume, low cost method which has been utilized for decades to produce lenses from oxide glasses. Due to the recent development of high quality precision-molded chalcogenide glasses, which are transparent at critical thermal imaging wavelengths, PGM has emerged as the enabling technology for low cost infrared optics. Since the price of germanium is high and volatile, it plays a large role in the high price of chalcogenide glasses that contain it. As40Se60 has previously been investigated as a lower-cost alternative to germanium-containing chalcogenide glasses and was found suitable for the PGM process. This paper investigates the composition-dependence of PGM-relevant properties for As38Se62 and standard As40Se60 and presents a comparison of molding behavior and lens performance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []