Mineral- and Base-Catalyzed Hydrolysis of Organophosphate Flame Retardants: Potential Major Fate-Controlling Sink in Soil and Aquatic Environments

2018 
The ubiquitous occurrence of organophosphate flame retardants (OPFRs) in aquatic and soil environments poses significant risks to human health and ecosystems. Here, we report on the hydrolysis of six OPFRs and three structural analogues in the absence and presence of metal (hydr)oxide minerals. Eight of the target compounds showed marked degradation in alkaline solutions (pH 9–12) with half-lives ranging from 0.02–170 days. Kinetics follow a second-order rate law with apparent rate constants for base-catalyzed hydrolysis (kB) ranging from 0.69–42 000 M–1 d–1. Although hydrolysis in homogeneous solution at circumneutral pH is exceedingly slow (t1/2 > 2 years, except for tris(2,2,2-trichloroethy) phosphate), rapid degradation is observed in the presence of metal (hydr)oxide minerals, with half-lives reduced to <10 days for most of the target OPFRs in mineral suspensions (15 m2/L mineral surface area loading). LC-qToF-MS analysis of transformation products confirmed ester hydrolysis as the active degradation...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    22
    Citations
    NaN
    KQI
    []