Silicon Nanowire Parameter Extraction Using DFT and Comparative Performance Analysis of SiNWFET and CNTFET Devices

2021 
The performance and scalability of silicon nanowire field-effect transistor (SiNWFET) and carbon nanotube field-effect transistor (CNTFET) with surround gate geometry were studied using such tools as material exploration and design analysis (MedeA) and device modeling and simulation SilvacoTCAD. The SiNWFET and CNTFET with gate-all-around (GAA) structure offer good gate electrostatic control, high On-current and better suppression of short-channel effects with complete encirclement of the device channel. Rather than using the bulk properties of silicon, estimation of properties silicon nanowire (SiNW) was made using MedeA VASP tool based on density functional theory (DFT). In this study, the device input (ID–VGS) and output (ID–VDS) have been analyzed and parameters like threshold voltage, IOn/IOff ratio, drain induced barrier lowering and sub-threshold slope extracted, and comparison is made between SiNWFET and CNTFET devices. The results point towards the DFT-based material parameter estimation to incorporate the quantum effects and use of SiNW/CNT-based GAA structure below 10 nm to meet scaling targets. The results suggest that the SiNWFET and CNTFET device with GAA geometry could be a better alternative to conventional MOSFETs and FinFET for numerous high-performance and low-power device applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    1
    Citations
    NaN
    KQI
    []