An Interface Equilibria-Triggered Time-Dependent Diffusion Model of the Boundary Potential and Its Application for the Numerical Simulation of the Ion-Selective Electrode Response in Real Systems

2018 
A simple dynamic model of the phase boundary potential of ion-selective electrodes is presented. The model is based on the calculations of the concentration profiles of the components in membrane and sample solution phases by means of the finite difference method. The fundamental idea behind the discussed model is that the concentration gradients in both membrane and sample solution phases determine only the diffusion of the components inside the corresponding phases but not the transfer across the interface. The transfer of the components across the interface at any time is determined by the corresponding local interphase equilibria. According to the presented model, each new calculation cycle begins with the correction of the components’ concentrations in the near-boundary (first) layers of the membrane and solution, based on the constants of the interphase equilibria and the concentrations established at a given time as a result of diffusion. The corrected concentrations of the components in the bounda...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    13
    Citations
    NaN
    KQI
    []