2D stepping microdrive for hyperspectral imaging

2015 
In a novel hyperspectral imaging concept based on confocal chromatic microscopy, a pinhole array (matrix of pinholes) has to be scanned across an intermediate image plane to capture the full object plane. In this paper a two-axis stepping microdrive is presented for the pinhole array (6×7.5×0.2 mm 3 of glass, weight 20 mg), featuring a 10 μm step size and a 200 μm displacement range in each direction. With the two-axis stepwise actuation of the pinhole array, the imaged area of the object plane is increased from 7% (fixed pinhole array) up to 89% with actuated array. The two-axis positioning is implemented with a three-axis inchworm motion driven by electrostatic forces. A combination of horizontal and vertical electrostatic actuators are arranged to achieve a precise in-plane actuation of the pinhole array. The microdrive is fabricated with established MEMS technologies and features a size about 1 cm 2 with 1 mm thickness. The microdrive is capable to position the pinhole array over the displacement range. The array size enables a 1:1 optical imaging on an 8 mm diagonal size CCD. The presented stepping microdrive outperforms existing microsystem solutions with a combination of high payload, large step size, displacement range, and the large optical aperture. Furthermore, the device concept enables the positioning of milligram weights with a highly integrated microsystem.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    0
    Citations
    NaN
    KQI
    []