Differential receptor crosstalk in DRD1-DRD2 heterodimer upon phasic and tonic dopamine signals

2021 
In response to phasic and tonic release, dopamine neurotransmission is regulated by its receptor subtypes, mainly dopamine receptor type 1 and 2 (DRD1 and DRD2). These dopamine receptors are known to form a heterodimer, however the receptor crosstalk between DRD1 and DRD2 was only suspected by measuring their downstream signaling products, due to the lack of methodology for selectively detecting individual activity of different dopamine receptors. Here, we develop red DRD1 sensor (R-DRD1) and green DRD2 sensor (G-DRD2) which can specifically monitor the real-time activity of DRD1 and DRD2, and apply these multicolor sensors to directly measure the receptor crosstalk in the DRD1-DRD2 heterodimer. Surprisingly, we discover that DRD1 activation in the heterodimer is inhibited only at micromolar phasic concentration of dopamine, while DRD2 activation is selectively inhibited at nanomolar tonic dopamine level. Differential receptor crosstalk in the DRD1-DRD2 heterodimer further modulates their downstream cAMP level. These data imply a novel function of the DRD1-DRD2 heterodimer at physiological dopamine levels of phasic and tonic release. Our approach utilizing multicolor receptor sensors will be useful to discover novel function of GPCR heterodimers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    0
    Citations
    NaN
    KQI
    []