Improvement in toughness of poly(L-lactide) (PLLA) through reactive blending with acrylonitrile-butadiene-styrene copolymer (ABS): Morphology and properties

2009 
Poly(l-lactide) (PLLA) was melt-blended with acrylonitrile–butadiene–styrene copolymer (ABS) with the aim of enhancing impact strength and elongation at break of PLLA, but not sacrificing its modulus and stiffness significantly. However, PLLA and ABS were found to be thermodynamically immiscible by simply melt blending and the formed blends show deteriorated mechanical properties. The reactive styrene/acrylonitrile/glycidyl methacrylate copolymer (SAN-GMA) by incorporating with ethyltriphenyl phosphonium bromide (ETPB) as the catalyst was used as the in situ compatibilizer for PLLA/ABS blends to improve the compatibility between PLLA and ABS. The reactive process during melt blending was investigated by Fourier transformed infra-red (FTIR). It showed that the epoxide group of SAN-GMA reacted with PLLA end groups under the mixing conditions and that the addition of ETPB accelerated the reaction. Phase structure and physical properties of the compatibilized blends were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic mechanical analysis (DMA), tensile tests and impact property measurements. It was found that the size of ABS domains in PLLA matrix is significantly decreased by addition of the reactive compatibilizer. The dynamic mechanical analysis revealed markedly shifted glass transition temperatures for both PLLA and ABS, indicating the improved compatibility between PLLA and ABS. The mechanical tests showed the compatibilized PLLA/ABS blends had a very nice stiffness-toughness balance, i.e., the improved impact strength and the elongation at break with a slightly loss in the modulus.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    225
    Citations
    NaN
    KQI
    []