Radio Emission from Outflow-Cloud Interaction and Its Constraint on TDE Outflow

2021 
Tidal disruption event (TDE) can launch an ultrafast outflow. If the black hole is surrounded by large amounts of clouds, outflow-cloud interaction will generate bow shocks, accelerate electrons and produce radio emission. Here we investigate the interaction between a non-relativistic outflow and clouds in active galaxies, which is manifested as outflow-BLR (broad line region) interaction, and can be extended to outflow-torus interaction. This process can generate considerable radio emission, which may account for the radio flares appearing a few months later after TDE outbursts. Radio observations can be used to directly constrain the physics of outflow, instead of indirectly providing a lower limit of the outflow energy by estimating the electron and magnetic field energy as in the outflow-CNM (circumnuclear medium) model. Benefitting from efficient energy conversion from outflow to shocks and the strong magnetic field, outflow-cloud interaction may play a non-negligible, or even dominating role in generating radio flares in a cloudy circumnuclear environment if the CNM density is no more than 100 times the Sgr A*-like one.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    0
    Citations
    NaN
    KQI
    []