Physics of galactic metals: evolutionary effects due to production, distribution, feedback, and interaction with black holes

2017 
We ask how the inclusion of various physical heating processes due to the metal content of gas affect the evolution of massive galaxies and compute a suite of cosmological hydrodynamical simulations that follow these systems and their supermassive black holes. We use a smoothed particle hydrodynamics code with a pressure-entropy formulation and a more accurate treatment of the metal production, turbulent diffusion and cooling rate based on individual element abundances. The feedback models include (1) AGN feedback via high velocity BAL winds and Compton/photoionization heating, (2) explicit stellar feedback from multiple processes including powerful winds from supernova events, stellar winds from young massive stars and AGB stars as well as radiative heating within Stromgren spheres around massive stars, and (3) additional heating effects due to the presence of metals including grain photoelectric heating, metallicity dependent X-ray heating by nearby accreting black holes and from the cosmic X-ray background, which are the major improvement in our feedback model. With a suite of zoom-in simulations of 30 halos with $M_{vir} \sim 10^{12-13.4}$, we show that energy and momentum budget from all feedback effects generate realistic galaxy properties. We explore the detailed role of each feedback model with three additional sets of simulations with varying input physics. We show that the metal induced heating mechanisms reduce the fraction of accreted stellar material by mainly suppressing the growth of diffuse small stellar systems at high redshift but overall have a relatively minor effect on the final stellar and gas properties of massive galaxies. The inclusion of AGN feedback significantly improves the ability of our cosmological simulations to yield realistic gas and stellar properties of massive galaxies with reasonable fraction of the final stellar mass accreted from other galaxies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    189
    References
    67
    Citations
    NaN
    KQI
    []