Extreme stiffness of neuronal synapses and implications for synaptic adhesion and plasticity

2020 
Synapses play a critical role in neural circuits, and they are potential sites for learning and memory. Maintenance of synaptic adhesion is critical for neural circuit function, however, biophysical mechanisms that help maintain synaptic adhesion are not clear. Studies with various cell types demonstrated the important role of stiffness in cellular adhesions. Although synaptic stiffness could also play a role in synaptic adhesion, stiffnesses of synapses are difficult to characterize due to their small size and challenges in verifying synapse identity and function. To address these challenges, we have developed an experimental platform that combines atomic force microscopy, fluorescence microscopy, and transmission electron microscopy. Here, using this platform, we report that functional, mature, excitatory synapses had an average elastic modulus of approximately 200 kPa, two orders of magnitude larger than that of the brain tissue, suggesting stiffness might have a role in synapse function. Similar to various functional and anatomical features of neural circuits, synaptic stiffness had a lognormal-like distribution, hinting a possible regulation of stiffness by processes involved in neural circuit function. In further support of this possibility, we observed that synaptic stiffness was correlated with spine size, a quantity known to correlate with synaptic strength. Using established stages of the long-term potentiation timeline and theoretical models of adhesion cluster dynamics, we developed a biophysical model of the synapse that not only explains extreme stiffness of synapses, their statistical distribution, and correlation with spine size, but also offers an explanation to how early biomolecular and structural changes during functional potentiation could lead to strengthening of synaptic adhesion. According to this model, synaptic stiffness serves as an indispensable physical messenger, feeding information back to synaptic adhesion molecules to facilitate maintenance of synaptic adhesion.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    0
    Citations
    NaN
    KQI
    []