Functional single-cell profiling identifies that exosomes are associated with increased immune cell infiltration in non-metastatic breast cancer

2020 
Exosomes mediate intercellular communication in health and disease. Conventional assays are limited in profiling exosomes secreted from large populations of cells and are unsuitable for studying the functional consequences of individual cells exhibiting varying propensity for exosome secretion. In cancer, since exosomes can support the development of the pre-metastatic niche, cells with varying abilities to secrete exosomes can directly impact tumorigenesis. Here, we developed a high throughput single-cell technique that enabled the mapping of exosome secretion dynamics. By utilizing clinically relevant models of breast cancer, we established that non-metastatic cancer cells secrete more exosomes than metastatic cancer cells. Single-cell RNA-sequencing confirmed that pathways related to exosome secretion were enriched in the non-metastatic cells compared to the metastatic cells. We established isogenic clonal cell lines from non-metastatic cells with differing propensities for exosome secretion and showed that exosome secretion is an inheritable property preserved during cell division. Combined in vitro and in vivo studies with these cell lines suggested that exosome secretion can impede tumor formation. In human non-metastatic breast tumors, tumors with higher secretion of exosomes have a better prognosis, higher immune cytolytic activity, and enrichment of pro-inflammatory macrophages compared to tumors with lower secretion of exosomes. Our single-cell methodology can become an essential tool that enables the direct integration of exosome secretion with multiple cellular functions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    0
    Citations
    NaN
    KQI
    []