Epidemic size, trend and spatiotemporal mapping of SARS-CoV-2 using geographical information system in Alborz Province, Iran

2021 
Background The first confirmed cases of COVID-19 in Iran were reported in Qom city. Subsequently, the neighboring provinces and gradually all 31 provinces of Iran were involved. This study aimed to investigate the case fatility rate, basic reproductive number in different period of epidemic, projection of daily and cumulative incidence cases and also spatiotemporal mapping of SARS-CoV-2 in Alborz province, Iran. Methods A confirmed case of COVID-19 infection was defined as a case with a positive result of viral nucleic acid testing in respiratory specimens. Serial interval (SI) was fitted by gamma distribution and considered the likelihood-based R0 using a branching process with Poisson likelihood. Seven days average of cases, deaths, doubling times and CFRs used to draw smooth charts. kernel density tool in Arc GIS (Esri) software has been employed to compute hot spot area of the study site. Results The maximum-likelihood value of R0 was 2.88 (95%, CI: 2.57-3.23) in the early 14 days of epidemic. The case fatility rate for Alborz province (Iran) on March 10, was 8.33% (95%, CI:6.3-11), and by April 20, it had an increasing trend and reached 12.9% (95%,CI:11.5-14.4). The doubling time has been increasing from about two days and then reached about 97 days on April 20, 2020, which shows the slowdown in the spread rate of the disease. Also, from March 26 to April 2, 2020 the whole Geographical area of Karj city was almost affected by SARS-CoV-2. Conclusions The R0 of COVID-19 in Alborz province was substantially high at the beginning of the epidemic, but with preventive measures and public education and GIS based monitoring of the cases,it has been reduced to 1.19 within two months. This reduction highpoints the attainment of preventive measures in place, however we must be ready for any second epidemic waves during the next months.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    0
    Citations
    NaN
    KQI
    []