Thermally rearranged polybenzoxazoles made from poly(ortho-hydroxyamide)s. Characterization and evaluation as gas separation membranes

2018 
Abstract Two series of aromatic poly( ortho -hydroxyamide)s (poly( o -hydroxyamide)s, HPAs) were prepared by reaction of two diamines, 2,2-bis(3-amino-4-hydroxyphenyl) propane (APA) and 2,2-bis(3-amino-4-hydroxyphenyl) hexafluoropropane (APAF), with four aromatic diacid chlorides; terephthaloyl dichloride (TPC), isophthaloyl dichloride (IPC), 2,2-bis[4-chlorocarbonylphenyl)hexafluoropropane (6FC) and 4,4′-sulfonyldibenzoyl dichloride (DBSC). Amorphous HPAs with high molecular weights (inherent viscosities higher than 0.5 dL/g) and relatively high glass transition temperatures (220–280 °C) were obtained. Dense membranes of HPAs were able to undergo a thermal rearrangement (TR) process to polybenzoxazoles (β-TR-PBOs) heating at moderate temperatures (between 250 and 375 °C), and their complete conversion was reached at a temperature below 375 °C, depending on the o -hydroxy diamine moiety, APA and APAF. The β-TR-PBOs films derived from APAF showed a higher thermal stability and higher Tg than those from APA. Gas separation properties of TR-PBOs membranes were superior to those of their poly( o -hydroxyamide) precursors, particularly for the following gas pairs: O 2 /N 2 , CO 2 /CH 4 , He/CH 4 and He/CO 2 .
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    17
    Citations
    NaN
    KQI
    []