Autocrine Activation of the Hepatocyte Growth Factor Receptor/Met Tyrosine Kinase Induces Tumor Cell Motility by Regulating Pseudopodial Protrusion

2002 
Abstract The multiple β-actin rich pseudopodial protrusions of the invasive variant of Moloney sarcoma virus (MSV)-transformed epithelial MDCK cells (MSV-MDCK-INV) are strongly labeled for phosphotyrosine. Increased tyrosine phosphorylation among a number of proteins was detected in MSV-MDCK-INV cells relative to untransformed and MSV-transformed MDCK cells, especially for the hepatocyte growth factor receptor (HGF-R), otherwise known as c-met proto-oncogene. Cell surface expression of HGF-R was similar in the three cell lines, indicating that HGF-R is constitutively phosphorylated in MSV-MDCK-INV cells. Both the tyrosine kinase inhibitor herbimycin A and the HGFα antibody abolished HGF-R phosphorylation, induced retraction of pseudopodial protrusions, and promoted the establishment of cell-cell contacts as well as the apparition of numerous stabilizing stress fibers in MSV-MDCK-INV cells. Furthermore, anti-HGFα antibody abolished cell motility among MSV-MDCK-INV cells. Conditioned medium from MSV-MDCK-INV cells induced MDCK cell scattering, indicating that HGF is secreted by MSV-MDCK-INV cells. HGF titration followed by a subsequent washout of the antibodies led to renewed pseudopodial protrusion and cellular movement. We therefore show that activation of the tyrosine kinase activity of HGF-R/Met via an autocrine HGF loop is directly responsible for pseudopodial protrusion, thereby explaining the motile and invasive potential of this model epithelium-derived tumor cell line.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    24
    Citations
    NaN
    KQI
    []