Monitoring trichloroethene remediation at an iron permeable reactive barrier using stable carbon isotopic analysis.

2005 
Abstract Stable carbon isotopic analysis, in combination with compositional analysis, was used to evaluate the performance of an iron permeable reactive barrier (PRB) for the remediation of ground water contaminated with trichloroethene (TCE) at Spill Site 7 (SS7), F.E. Warren Air Force Base, Wyoming. Compositional data indicated that although the PRB appeared to be reducing TCE to concentrations below treatment goals within and immediately downgradient of the PRB, concentrations remained higher than expected at wells further downgradient (i.e. > 9 m) of the PRB. At two wells downgradient of the PRB, TCE concentrations were comparable to upgradient values, and δ 13 C values of TCE at these wells were not significantly different than upgradient values. Since the process of sorption/desorption does not significantly fractionate carbon isotope values, this suggests that the TCE observed at these wells is desorbing from local aquifer materials and was present before the PRB was installed. In contrast, three other downgradient wells show significantly more enriched δ 13 C values compared to the upgradient mean. In addition, δ 13 C values for the degradation products of TCE, cis -dichloroethene and vinyl chloride, show fractionation patterns expected for the products of the reductive dechlorination of TCE. Since concentrations of both TCE and degradation products drop to below detection limit in wells within the PRB and directly below it, these downgradient chlorinated hydrocarbon concentrations are attributed to desorption from local aquifer material. The carbon isotope values indicate that this dissolved contaminant is subject to local degradation, likely due to in situ microbial activity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    35
    Citations
    NaN
    KQI
    []