Modifying a Commonly Expressed Endocytic Receptor Retargets Nanoparticles in Vivo.

2018 
Nanoparticles are often targeted to receptors expressed on specific cells, but few receptors are (i) highly expressed on one cell type and (ii) involved in endocytosis. One unexplored alternative is manipulating an endocytic gene expressed on multiple cell types; an ideal gene would inhibit delivery to cell type A more than cell type B, promoting delivery to cell type B. This would require a commonly expressed endocytic gene to alter nanoparticle delivery in a cell type-dependent manner in vivo; whether this can occur is unknown. Based on its microenvironmental regulation, we hypothesized Caveolin 1 (Cav1) would exert cell type-specific effects on nanoparticle delivery. Fluorescence was not sensitive enough to investigate this question, and as a result, we designed a platform named QUANT to study nanoparticle biodistribution. QUANT is 108× more sensitive than fluorescence and can be multiplexed. By measuring how 226 lipid nanoparticles (LNPs) delivered nucleic acids to multiple cell types in vivo in wild-...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    72
    References
    17
    Citations
    NaN
    KQI
    []