Persistent high PM2.5 pollution driven by unfavorable meteorological conditions during the COVID-19 lockdown period in the Beijing-Tianjin-Hebei region, China.

2021 
Abstract Lockdown measures to curtail the COVID-19 pandemic in China halted most non-essential activities on January 23, 2020. Despite significant reductions in anthropogenic emissions, the Beijing-Tianjin-Hebei (BTH) region still experienced high air pollution concentrations. Employing two emissions reduction scenarios, the Community Multiscale Air Quality (CMAQ) model was used to investigate the PM2.5 concentrations change in this region. The model using the scenario (C3) with greater traffic reductions performed better compared to the observed PM2.5. Compared with the no reductions base-case (scenario C1), PM2.5 reductions with scenario C3 were 2.70, 2.53, 2.90, 2.98, 3.30, 2.81, 2.82, 2.98, 2.68, and 2.83 μg/m3 in Beijing, Tianjin, Shijiazhuang, Baoding, Cangzhou, Chengde, Handan, Hengshui, Tangshan, and Xingtai, respectively. During high-pollution days in scenario C3, the percentage reductions in PM2.5 concentrations in Beijing, Tianjin, Shijiazhuang, Baoding, Cangzhou, Chengde, Handan, Hengshui, Tangshan, and Xingtai were 3.76, 3.54, 3.28, 3.22, 3.57, 3.56, 3.47, 6.10, 3.61, and 3.67%, respectively. However, significant increases caused by unfavorable meteorological conditions counteracted the emissions reduction effects resulting in high air pollution in BTH region during the lockdown period. This study shows that effective air pollution control strategies incorporating these results are urgently required in BTH to avoid severe pollution.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    5
    Citations
    NaN
    KQI
    []