Effects of methoxypoly (Ethylene glycol) mediated immunocamouflage on leukocyte surface marker detection, cell conjugation, activation and alloproliferation.

2016 
Abstract Tissue rejection occurs subsequent to the recognition of foreign antigens via receptor-ligand contacts between APC (antigen presenting cells) and T cells, resulting in initialization of signaling cascades and T cell proliferation. Bioengineering of donor cells by the covalent attachment of methoxypolyethylene glycol (mPEG) to membrane proteins (PEGylation) provides a novel means to attenuate these interactions consequent to mPEG-induced charge and steric camouflage. While previous studies demonstrated that polymer-mediated immunocamouflage decreased immune recognition both in vitro and in vivo , these studies monitored late events in immune recognition and activation such as T cell proliferation. Consequently little information has been provided concerning the early cellular events governing this response. Therefore, the effect of PEGylation was assessed by examining initial cell–cell interactions, changes to activation pathways, and apoptosis to understand the role that each may play in the decreased proliferative response observed in modified cells during the course of a mixed lymphocyte reaction (MLR). The mPEG-modified T cells resulted in significant immunocamouflage of lymphocyte surface proteins and decreased interactions with APC. Furthermore, mPEG-MLR exhibited decreased NFκB pathway activation, while exhibiting no significant differences in degree of cell death compared to the control MLR. These results suggest that PEGylation may prevent the direct recognition of foreign alloantigens by decreasing the stability and duration of initial cell–cell interactions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    24
    Citations
    NaN
    KQI
    []