A user-centric privacy-preserving authentication protocol for IoT-AmI environments

2022 
Ambient Intelligence (AmI) in Internet of Things (IoT) has empowered healthcare professionals to monitor, diagnose, and treat patients remotely. Besides, the AmI-IoT has improved patient engagement and gratification as doctors’ interactions have become more comfortable and efficient. However, the benefits of the AmI-IoT-based healthcare applications are not availed entirely due to the adversarial threats. IoT networks are prone to cyber attacks due to vulnerable wireless mediums and the absentia of lightweight and robust security protocols. This paper introduces computationally-inexpensive privacy-assuring authentication protocol for AmI-IoT healthcare applications. The use of blockchain & fog computing in the protocol guarantees unforgeability, non-repudiation, transparency, low latency, and efficient bandwidth utilization. The protocol uses physically unclonable functions (PUF), biometrics, and Ethereum powered smart contracts to prevent replay, impersonation, and cloning attacks. Results prove the resource efficiency of the protocol as the smart contract incurs very minimal gas and transaction fees. The Scyther results validate the robustness of the proposed protocol against cyber-attacks. The protocol applies lightweight cryptography primitives (Hash, PUF) instead of conventional public-key cryptography and scalar multiplications. Consequently, the proposed protocol is better than centralized infrastructure-based authentication approaches.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []