Path Signature Neural Network of Cortical Features for Prediction of Infant Cognitive Scores

2022 
Studies have shown that there is a tight connection between cognition skills and brain morphology during infancy. Nonetheless, it is still a great challenge to predict individual cognitive scores using their brain morphological features, considering issues like the excessive feature dimension, small sample size and missing data. Due to the limited data, a compact but expressive feature set is desirable as it can reduce the dimension and avoid the potential overfitting issue. Therefore, we pioneer the path signature method to further explore the essential hidden dynamic patterns of longitudinal cortical features. To form a hierarchical and more informative temporal representation, in this work, a novel cortical feature based path signature neural network (CF-PSNet) is proposed with stacked differentiable temporal path signature layers for prediction of individual cognitive scores. By introducing the existence embedding in path generation, we can improve the robustness against the missing data. Benefiting from the global temporal receptive field of CF-PSNet, characteristics consisted in the existing data can be fully leveraged. Further, as there is no need for the whole brain to work for a certain cognitive ability, a top ${K}$ selection module is used to select the most influential brain regions, decreasing the model size and the risk of overfitting. Extensive experiments are conducted on an in-house longitudinal infant dataset within 9 time points. By comparing with several recent algorithms, we illustrate the state-of-the-art performance of our CF-PSNet (i.e., root mean square error of 0.027 with the time latency of 518 milliseconds for each sample).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    0
    Citations
    NaN
    KQI
    []