Deep Neural Network With Structural Similarity Difference and Orientation-Based Loss for Position Error Classification in the Radiotherapy of Graves’ Ophthalmopathy Patients

2022 
Identifying position errors for Graves’ ophthalmopathy (GO) patients using electronic portal imaging device (EPID) transmission fluence maps is helpful in monitoring treatment. However, most of the existing models only extract features from dose difference maps computed from EPID images, which do not fully characterize all information of the positional errors. In addition, the position error has a three-dimensional spatial nature, which has never been explored in previous work. To address the above problems, a deep neural network (DNN) model with structural similarity difference and orientation-based loss is proposed in this paper, which consists of a feature extraction network and a feature enhancement network. To capture more information, three types of Structural SIMilarity (SSIM) sub-index maps are computed to enhance the luminance, contrast, and structural features of EPID images, respectively. These maps and the dose difference maps are fed into different networks to extract radiomic features. To acquire spatial features of the position errors, an orientation-based loss function is proposed for optimal training. It makes the data distribution more consistent with the realistic 3D space by integrating the error deviations of the predicted values in the left-right, superior-inferior, anterior-posterior directions. Experimental results on a constructed dataset demonstrate the effectiveness of the proposed model, compared with other related models and existing state-of-the-art methods.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    0
    Citations
    NaN
    KQI
    []