Planting trees in graphs, and finding them back

2019 
In this paper we study the two inference problems of detection and reconstruction in the context of planted structures in sparse Erdős-Rényi random graphs $\mathcal G(n,\lambda/n)$ with fixed average degree $\lambda>0$. Motivated by a problem of communication security, we focus on the case where the planted structure consists in the addition of a tree graph. In the case of planted line graphs, we establish the following phase diagram for detection and reconstruction. In a low density region where the average degree $\lambda$ of the original graph is below some critical value $\lambda_c=1$, both detection and reconstruction go from impossible to easy as the line length $K$ crosses some critical value $K^*=\ln(n)/\ln(1/\lambda)$, where $n$ is the number of nodes in the graph. In a high density region where $\lambda>\lambda_c$, detection goes from impossible to easy as $K$ goes from $o(\sqrt{n})$ to $\omega(\sqrt{n})$. In contrast, reconstruction remains impossible so long as $K=o(n)$. We then consider planted $D$-ary trees of varying depth $h$ and $2\le D\le O(1)$. For these we identify a low-density region $\lambda\lambda_D$, but confirm only the following part of this picture: Detection is easy for $D$-ary trees of size $\omega(\sqrt{n})$, while at best only partial reconstruction is feasible for $D$-ary trees of any size $o(n)$. These results provide a clear contrast with the corresponding picture for detection and reconstruction of {\em low rank} planted structures, such as dense subgraphs and block communities. In the examples we study, there is i) an absence of hard phases for both detection and reconstruction, and ii) a discrepancy between detection and reconstruction, the latter being impossible for a wide range of parameters where detection is easy. The latter property does not hold for previously studied low rank planted structures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []