NOMA-Based Integrated Satellite-Terrestrial Networks with Wireless Caching

2022 
To decrease the transmission delay and alleviate communication congestion, caching has been applied in the integrated satellite-terrestrial networks (ISTNs). In traditional caching schemes, the cache-enabled relays update files during off-peak hours and push them during on-peak hours. However, for the enormous number of end devices in ISTNs, the long-time waiting for off/on-peak hours would decrease the quality of service. To address this issue, this paper proposes a two-tier nonorthogonal multiple access- (NOMA-) based ISTN with wireless caching. Specifically, data transmission of this model consists of two phases. For the first phase, named the file-push-and-placement (FPAP), the satellite employs the NOMA protocol to send information to both the relay and first-tier user. While for the second phase, which is called the file-push-and-delivery (FPAD), second-tier users are served by the relay employing NOMA. Performance analysis of the proposed configuration is carried out, focusing on the exact and asymptotic outage probability (OP), diversity order, and hit probability. Moreover, the influence of key factors on the system performance is also investigated. Compared with the traditional configuration, it is shown analytically and numerically that the proposed scheme achieves lower OP and higher diversity order.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []