Amorphous Selenium Nanoparticles Improve Vascular Function in Rats With Chronic Isocarbophos Poisoning via Inhibiting the Apoptosis of Vascular Endothelial Cells.

2021 
Aim This study aimed to investigate the preventive effect and possible mechanism of amorphous selenium nanoparticles (A-SeQDs) on isocarbophos induced vascular dysfunction. Methods A-SeQDs was made by auto redox decomposition of selenosulfate precursor. Male rats were given isocarbophos (0.5 mg/kg/2 days) by intragastric administration for 16 weeks to induce vascular dysfunction. During the course, A-SeQDs (50 mg/kg/day) was added to the water from week 5. Then, the rats were killed to observe and test the influence of A-SeQDs on the vascular dysfunction induced by isocarbophos. Finally, human umbilical vein endothelial cells (HUVECs) were treated with 10% DMEM of isocarbophos (100 μM) for 5 days to detect the related indexes. Before the use of isocarbophos treatment, different drugs were given. Results A-SeQDs could reduce total carbon dioxide, MDA, VCAM-1, ICAM-1, IL-1, and IL-6 while increasing oxygen saturation, NO content, and SOD activity in rats. A-SeQDs also resulted in relatively normal vascular morphology, and the expression of sodium hydrogen exchanger 1 (NHE1) and caspase-3 decreased in rats. Furthermore, in HUVECs treated with isocarbophos, A-SeQDs maintained mitochondrial membrane potential, inhibited the cleaved caspase-3 expression, and released cytochrome c from mitochondria to cytosol. Conclusion A-SeQDs can inhibit the apoptosis of HUVECs through the mitochondrial pathway, and effectively treat the impairment of vascular endothelial function caused by isocarbophos, which is NHE1-dependent.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    0
    Citations
    NaN
    KQI
    []