Parameterized complexity and approximability of directed odd cycle transversal

2020 
A directed odd cycle transversal of a directed graph (digraph) D is a vertex set S that intersects every odd directed cycle of D. In the Directed Odd Cycle Transversal (DOCT) problem, the input consists of a digraph D and an integer k. The objective is to determine whether there exists a directed odd cycle transversal of D of size at most k. In this paper, we settle the parameterized complexity of DOCT when parameterized by the solution size k by showing that DOCT does not admit an algorithm with running time f(k)nO(1) unless FPT = W[1]. On the positive side, we give a factor 2 fixed-parameter approximation (FPT approximation) algorithm for the problem. More precisely our algorithm takes as input D and k, runs in time 2O(k)nO(1), and either concludes that D does not have a directed odd cycle transversal of size at most k, or produces a solution of size at most 2k. Finally assuming gap-ETH, we show that there exists an ϵ > 0 such that DOCT does not admit a factor (1 + ϵ) FPT-approximation algorithm.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []