Achieve Efficient and Privacy-Preserving Compound Substring Query over Cloud

2021 
The cloud computing technique, which was initially used to mitigate the explosive growth of data, has been required to take both data privacy and users’ query functionality into consideration. Searchable symmetric encryption (SSE) is a popular solution that can support efficient attribute queries over encrypted datasets in the cloud. In particular, some SSE schemes focus on the substring query, which deals with the situation that the user only remembers the substring of the queried attribute. However, all of them just consider substring queries on a single attribute, which cannot be used to achieve compound substring queries on multiple attributes. This paper aims to address this issue by proposing an efficient and privacy-preserving SSE scheme supporting compound substring queries. In specific, we first employ the position heap technique to design a novel tree-based index to support substring queries on a single attribute and employ pseudorandom function (PRF) and fully homomorphic encryption (FHE) techniques to protect its privacy. Then, based on the homomorphism of FHE, we design a filter algorithm to calculate the intersection of search results for different attributes, which can be used to support compound substring queries on multiple attributes. Detailed security analysis shows that our proposed scheme is privacy-preserving. In addition, extensive performance evaluations are also conducted, and the results demonstrate the efficiency of our proposed scheme.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    0
    Citations
    NaN
    KQI
    []