Sparse Binary Compression: Towards Distributed Deep Learning with minimal Communication

2019 
Currently, progressively larger deep neural networks are trained on ever growing data corpora. In result, distributed training schemes are becoming increasingly relevant. A major issue in distributed training is the limited communication bandwidth between contributing nodes or prohibitive communication cost in general. To mitigate this problem we propose Sparse Binary Compression (SBC), a compression framework that allows for a drastic reduction of communication cost for distributed training. SBC combines existing techniques of communication delay and gradient sparsification with a novel binarization method and optimal weight update encoding to push compression gains to new limits. By doing so, our method also allows us to smoothly trade-off gradient sparsity and temporal sparsity to adapt to the requirements of the learning task. Our experiments show, that SBC can reduce the upstream communication on a variety of convolutional and recurrent neural network architectures by more than four orders of magnitude without significantly harming the convergence speed in terms of forward-backward passes. For instance, we can train ResNet50 on ImageNet in the same number of iterations to the baseline accuracy, using ×3531 less bits or train it to a 1% lower accuracy using ×37208 less bits. In the latter case, the total upstream communication required is cut from 125 terabytes to 3.35 gigabytes for every participating client.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    0
    Citations
    NaN
    KQI
    []