A design method for an intelligent manufacturing and service system for rehabilitation assistive devices and special groups

2022 
The maturity of Industrial 4.0 technologies (smart wearable sensors, Internet of things [IoT], cloud computing, etc.) has facilitated the iteration and digitization of rehabilitation assistive devices (RADs) and the innovative development of intelligent manufacturing systems of RADs, expanding the value-added component of smart healthcare services. The intelligent manufacturing service mode, based on the concept of the product life cycle, completes the multi-source data production process analysis and the optimization of manufacturing, operation, and maintenance through intelligent industrial Internet of things and other means and improves the product life cycle management and operation mechanism. The smart product-service system (PSS) realizes the value-added of products by providing users with personalized products and value-added services, service efficiency, and sustainable development and gradually forms an Internet-product-service ecosystem. However, research on the PSS of RADs for special populations is relatively limited. Thus, this paper provides an overview of an IoT-based production model for RADs and a smart PSS-based development method of multimodal healthcare value-added services for special people. Taking the hand rehabilitation training devices for autistic children as a case, this paper verifies the effectiveness and availability of the proposed method. Compared with the traditional framework, the method used in this paper primarily helps evaluate rehabilitation efficacy, personalizes schemes for patients, provides auxiliary intelligent manufacturing service data and digital rehabilitation data for RAD manufacturers, and optimizes the product iteration development procedures by combining user-centered product interaction, multimodal evaluation, and value-added design. This study incorporates the iterative design of RADs into the process of smart PSS to provide some guidance to the RADs design manufacturers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []