Optimal Time Allocation for Energy Harvesting Cognitive Radio Networks with Multichannel Spectrum Sensing

2022 
From the perspective of time domain and frequency domain, we investigate the energy harvesting cognitive radio networks (EH-CRNs) with multichannel, where the secondary transmitter (ST) opportunistically accesses the licensed subchannels to transmit packets by consuming the harvested energy. To explore the spectrum holes and improve the lifetime of the EH-CRNs, the ST scavenges energy from the radio-frequency (RF) signal in the wide band during the energy harvesting (EH) phase and exploits the harvested energy for sequential sensing and packet transmission during the rest of the time slot. Under the energy constraint, the secondary throughput is improved by optimizing the time allocation among the EH phase, sensing phase, and transmission phase. We formulate the secondary throughput with respect to the durations of the three phases, prove the existence of the optimal time allocation, and discuss the secondary throughput in three cases of the EH-CRNs. Finally, numerical results validate the theoretical results about the secondary throughput and explore the impacts of key system parameters.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []