Visualizing Flow Trajectories Using Locality-based Rendering and Warped Curve Plots

2010 
In flow simulations the behavior and properties of particle trajectories often depend on the physical geometry contained in the simulated environment. Understanding the flow in and around the geometry itself is an important part of analyzing the data. Previous work has often utilized focus+context rendering techniques, with an emphasis on showing trajectories while simplifying or illustratively rendering the physical areas. Our research instead emphasizes the local relationship between particle paths and geometry by using a projected multi-field visualization technique. The correlation between a particle path and its surrounding area is calculated on-the-fly and displayed in a non-intrusive manner. In addition, we support visual exploration and comparative analysis through the use of linked information visualization, such as manipulatable curve plots and one-on-one similarity plots. Our technique is demonstrated on particle trajectories from a groundwater simulation and a computer room airflow simulation, where the flow of particles is highly influenced by the dense geometry.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    0
    Citations
    NaN
    KQI
    []