Few-Shot Learning With Class-Covariance Metric for Hyperspectral Image Classification

2022 
Recently, embedding and metric-based few-shot learning (FSL) has been introduced into hyperspectral image classification (HSIC) and achieved impressive progress. To further enhance the performance with few labeled samples, we in this paper propose a novel FSL framework for HSIC with a class-covariance metric (CMFSL). Overall, the CMFSL learns global class representations for each training episode by interactively using training samples from the base and novel classes, and a synthesis strategy is employed on the novel classes to avoid overfitting. During the meta-training and meta-testing, the class labels are determined directly using the Mahalanobis distance measurement rather than an extra classifier. Benefiting from the task-adapted class-covariance estimations, the CMFSL can construct more flexible decision boundaries than the commonly used Euclidean metric. Additionally, a lightweight cross-scale convolutional network (LXConvNet) consisting of 3D and 2D convolutions is designed to thoroughly exploit the spectral-spatial information in the high-frequency and low-frequency scales with low computational complexity. Furthermore, we devise a spectral-prior-based refinement module (SPRM) in the initial stage of feature extraction, which cannot only force the network to emphasize the most informative bands while suppressing the useless ones, but also alleviate the effects of the domain shift between the base and novel categories to learn a collaborative embedding mapping. Extensive experiment results on four benchmark data sets demonstrate that the proposed CMFSL can outperform the state-of-the-art methods with few-shot annotated samples.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []