Protein Corona Formation of Human Serum Albumin with Carbon Quantum Dots from Roasted Salmon

2020 
As the food-borne nanoparticles enter the biological system, they will contact with various proteins to form protein coronas, which can affect their physicochemical properties and biological identity. In this study, the protein corona formation of carbon quantum dots (CQDs) from roast salmon with human serum albumin (HSA), as well as biological identity involving cell apoptosis, energy, glucose and lipid metabolism and acute toxicity in mice, were investigated. The HSA-CQD coronas formed between HSA and CQDs via static binding mechanism, and the binding site of CQDs on HSA located both in Sudlow’s site I and site II. The HSA-CQD coronas entered the cytoplasm and present in lysosomes or autolysosomes. Importantly, the HSA coronas mitigated the cytotoxicity of CQDs from 18.65% to 9.26%, and the energy metabolism was rectified from glycolytic to aerobic metabolism. The glucose and lipid metabolite profile of the HSA-CQD coronas differed from that of the CQDs, indicating that HSA-CQD coronas rectified disturbance in metabolism. Histopathological and blood biochemical analysis revealed no statistically significant difference between the testing and control mice after a single CQDs dose of 2000 mg/kg body weight. Overall, the results confirmed the formation of protein corona between HSA and food-borne fluorescent CQDs, and could be helpful for evaluating the safety of fluorescent CQDs from roast food items.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    14
    Citations
    NaN
    KQI
    []