Identification of differentially activated pathways in Phytophthora sojae at the mycelial, cyst, and oospore stages by TMT-based quantitative proteomics analysis.

2020 
Phytophthora sojae is a widely distributed, destructive oomycete plant pathogen that has been developed as a model for oomycete biology. Given the important but limited reports on the comparison of the sexual and asexual stages in Phytophthora, we performed a large-scale quantitative proteomics study on two key asexual life stages of P.sojae-the mycelium and cyst-as well as on the oospore, which is a key sexual stage. Over 29,631 peptides from 4688 proteins were analyzed. Briefly, 445 proteins, 624 proteins, and 579 proteins were defined as differentially quantified proteins in cyst vs mycelium, oospore vs cyst, and oospore vs mycelium comparisons, respectively (|log2 fold change|>1 and P<.05). Compared to the mycelium and oospore, fatty acid and nitrogen metabolism were specifically induced in cysts. In oospores, the up-regulated proteins focused on RNA transport and protein processing in endoplasmic reticulum, indicating translation, folding, and the secretion of core cellular or stage-specific proteins active in oospores, which might be used for oospore germination. The data presented expand our knowledge of pathways specifically linked to asexual and sexual stages of this pathogen. BIOLOGICAL SIGNIFICANCE: The sexual spores (oospores) in oomycetes have thick cell walls and can survive in the soil for years, thus providing a primary source and allowing the reinfection of their host plant in subsequent growing seasons. However, the proteomic study on oospores remains very limited as they are generally considered to be dormant. In the present study, we successfully isolated oospores, and performed a large-scale comparative quantitative proteomics study on this key sexual stage and two representative asexual stages of P.sojae. The results provide an improved understanding of P.sojae biology and suggest potential metabolic targets for disease control at the three different developmental stages in oomycetes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    3
    Citations
    NaN
    KQI
    []