Engineering a New Class of Anti-LacI Transcription Factors with Alternate DNA Recognition

2019 
The lactose repressor, LacI (I+YQR), is an archetypal transcription factor that has been a workhorse in many synthetic genetic networks. LacI represses gene expression (apo ligand) and is induced upon binding of the ligand isopropyl β-d-1-thiogalactopyranoside (IPTG). Recently, laboratory evolution was used to confer inverted function in the native LacI topology resulting in anti-LacI (antilac) function (IAYQR), where IPTG binding results in gene suppression. Here we engineered 46 antilacs with alternate DNA binding function (IAADR). Phenotypically, IAADR transcription factors are the inverse of wild-type I+YQR function and possess alternate DNA recognition (ADR). This collection of bespoke IAADR bind orthogonally to disparate non-natural operator DNA sequences and suppress gene expression in the presence of IPTG. This new class of IAADR gene regulators were designed modularly via the systematic pairing of nine alternate allosteric regulatory cores with six alternate DNA binding domains that interact with...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    9
    Citations
    NaN
    KQI
    []