Catalytic cycle of the phosphatidylcholine-preferring phospholipase C from Bacillus cereus. Solvent viscosity, deuterium isotope effects, and proton inventory studies.

1999 
The phosphatidylcholine-preferring phospholipase C from Bacillus cereus (PLCBc) is a 28.5 kDa enzyme with three zinc ions in its active site. Although much is known about the roles that various PLCBc active site amino acids play in binding and catalysis, there is little information about the rate-determining step of the PLCBc-catalyzed hydrolysis of phospholipids and the catalytic cycle of the enzyme. To gain insight into these aspects of the hydrolysis, solvent viscosity variation experiments were conducted to determine whether an external step (substrate binding or product release) or an internal step (hydrolysis) is rate-limiting. The data indicate that the PLCBc-catalyzed reaction is unaffected by changes in solvent viscosity. This observation is inconsistent with the notion of substrate binding or product release being rate-determining and supports the hypothesis that a chemical step is rate-limiting. Furthermore, a deuterium isotope effect of 1.9 and a linear proton inventory plot indicate one proto...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    27
    Citations
    NaN
    KQI
    []