A Three-dimensional Source Location Algorithm Based on Sparse Planar Array with Low Complexity

2021 
A RAnk REduced MUSIC (RARE-MUSIC) algorithm based on Coprime Linear rray Coprime Shift Spare Planar Array (CLACS-SPA) is proposed, in order to solve the problems in the three-dimension source location, such as too complex array structure, too high-complexity algorithm and large partial spectrum range. The proposed CLACS-SPA has a centrosymmetric coprime sparse array structure, which reduces the number of antennas and structural complexity of the array, compared with the uniform planar array structure of the same caliber. The direction and distance information in the received signal are separated and estimated by Taylor formula, thus the three-dimensional spectral peak search is transformed into the two-dimensional search of the azimuth angle as well as elevation angle and the one-dimensional search of the distance, which reduces the computational complexity of the positioning algorithm. Simulation results show that the complexity of the proposed structure is one to two orders of magnitude lower than that of the uniform planar array structure, under the same aperture and location algorithm. In addition, for the same caliber of the proposed CLACS-SPA structure, the proposed RARE-MUSIC algorithm is less complex than the classical three-dimension MUSIC with two to three orders of magnitude. And under the same aperture and number of antennas, the proposed RARE-MUSIC greatly reduces the computational complexity and improves the measurement accuracy of azimuth and elevation angles, in comparison with the classical three-dimension MUSIC algorithm.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []