Contractile properties of single motor units in two multi-tendoned muscles of the cat distal forelimb

1992 
The contractile properties of motor units (MUs) in two multi-tendoned forelimb muscles were investigated. In anesthetized cats single MUs of the extensor carpi ulnaris (ECU) and extensor digitorum communis (EDC) muscles were selectively activated by stimulation of cervical ventral root filaments. MUs were characterized by various tests including single twitches, series of tetanic contractions providing a tension-frequency relation and a fatigue test. They were classified by the parameters contraction time (CT, time-to-peak within unpotentiated single twitches) and fatigue-index (RB, according to Burke). The ECU muscle is composed of 38% type FR MUs (fast, fatigue-sensitive; CT 0.5) and 27% type S MUs (slow; CT>38 ms, RB>0.5). 46% of the EDC MUs were classified as FF (RB≤0.25), 29% as FI (fast, intermediately fatiguable; 0.25 -0.75). The latter group was devised since most MUs appeared as fast and the unequivocal presence of slow MUs could neither be demonstrated nor excluded. Normalized tension-frequency relations of fast ECU and EDC MUs were nearly identical and similar to those reported for fast MUs of other muscles. In contrast to this, the tension-frequency relation of slow ECU MUs has a different shape supporting the use of this function to distinguish fast from slow MUs. The distribution of different types of MUs is discussed with regard to the structure and function of the parent muscles and in relation to hindlimb muscles of comparable architecture. As revealed by comparison to EMG data gained in behaving animals (Fritz et al. 1985; Hoffmann et al. 1986, Botterman et al. 1985), the three muscles of the cat distal forelimb investigated so far seem to be adapted to different tasks: the EDC to rapid movements with a high proportion of type FF MUs, flexor carpi radialis to sustained contractions during the body support with a high proportion of fatigue-resistant MUs; the ECU which changes synergism between both muscles has an intermediate composition.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    12
    Citations
    NaN
    KQI
    []