DAPT inhibits titanium particle-induced osteolysis by suppressing the RANKL/Notch2 signaling pathway.

2020 
Artificial prosthesis is wildly used in clinical medicine for degenerative disease such as osteoclast-related diseases. However, the material wear particles released from the surface of prostheses cause prosthetic loosening as a result of aseptic osteolysis in long-term use. Therefore, it is important to find an agent that inhibits the formation and function of osteoclast for therapeutic use. Notch signaling pathway plays a lot of roles in cell proliferation, differentiation and apoptosis. However, the role of Notch signaling pathway in osteoclastogenesis remains unclear. The aim of this study is to assess the effects of gamma-secretase inhibitor DAPT on osteoclastogenesis via Notch signaling pathway in vitro and titanium particle-induced osteolysis in vivo. In animal experiments, the inhibitory effect of DAPT on titanium particle-induced osteolysis in a mouse calvaria model was demonstrated. Interestingly, few resorption pits were observed following administration of DAPT and almost no osteoclasts formed at high concentration of DAPT. In vitro experiments revealed the mechanism of the effects of DAPT on osteoclastogenesis. DAPT inhibited the formation and function of osteoclast by blocking RANKL-induced Notch2-NF-kappaB complex signaling pathway. In conclusion, these results indicated that DAPT could prevent and cure titanium particle-induced prosthetic loosening and other osteoclast-related diseases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    1
    Citations
    NaN
    KQI
    []