Disentangling the relative roles of resource acquisition and allocation on animal feed efficiency: insights from a dairy cow model

2016 
Background Feed efficiency of farm animals has greatly improved through genetic selection for production. Today, we are faced with the limits of our ability to predict the effect of selection on feed efficiency, partly because the relative importance of the components of this complex phenotype changes across environments. Thus, we developed a dairy cow model that incorporates the dynamic interplay between life functions and evaluated its behaviour with a global sensitivity analysis on two definitions of feed efficiency. A key model feature is to consider feed efficiency as the result of two processes, acquisition and allocation of resources. Acquisition encapsulates intake and digestion, and allocation encapsulates partitioning rules between physiological functions. The model generates genetically-driven trajectories of energy acquisition and allocation, with four genetic-scaling parameters controlling these processes. Model sensitivity to these parameters was assessed with a complete factorial design.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    10
    Citations
    NaN
    KQI
    []