Estradiol Regulation of Estrogen Receptor Messenger Ribonucleic Acid in Rat Mediobasal Hypothalamus: An in situ Hybridization Study

1990 
We have used in situ hybridization to investigate estradiol regulation of estrogen receptor (ER) mRNA in regions of the mediobasal hypothalamus which contain ER and are related to specific neuroendocrine functions. Ovariectomized rats were treated with oil or 10 μg estradiol benzoate for 2, 4, 18 or 24 h. Brains were sectioned and hybridized with a [3 H]single-stranded DNA probe prepared from the pORF cDNA of the human ER gene and exposed to autoradiographic emulsion for 4 months. Specificity of labeling was determined by counting the number of grains over cells in hypothalamic regions known to bind estradiol, compared to cells in the thalamus and cortex, and by comparing with sections pretreated with ribonuclease or hybridized with a [3 H]single-stranded message-sense (control) probe. Labeling for ER mRNA was distributed differently than glucocorticoid and thyroid hormone receptor mRNAs, and was regulated by estrogen differently than progestin receptor mRNA. These differences indicated specific hybridization for ER mRNA. ER-expressing cells constituted 11.5% of the cells in the dorsomedial nucleus, 30% of the cells in the arcuate nucleus and 43% in the ventromedial nucleus, in close accordance with previous studies of ER autoradiography and binding. Quantitative analysis showed that the highest level of ER mRNA was present in the ovariectomized controls. ER mRNA levels fell 42% (ventromedial), 64% (arcuate), or remained unchanged (dorsomedial) 18 h following estradiol benzoate treatment. The pattern of decrease was similar for cells in the ventromedial nucleus and arcuate nucleus. These data show that estrogen regulation of ER mRNA in brain parallels that reported for MCF-7 cells and rat uterus. These results also demonstrate that in situ hybridization can be used to detect and measure the relative level of a low abundance mRNA in a heterogeneous tissue in which only 12% to 40% of the cells in limited regions express the message.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    95
    Citations
    NaN
    KQI
    []