A surface plasmon resonance chemical sensor composed of microstructured optical fibers for detection of an ultra-wide refractive index range and gas-liquid pollutants

2021 
A surface plasmon resonance (SPR) chemical sensor comprising microstructured optical fiber (MOF) is designed for refractive index (RI) sensing in the visible to near-infrared (0.42-1.60 µm) region (NIR) as well as detection of gas-liquid pollutants. To realize mode coupling and facilitate manufacturing, gold with inert and plasmonic properties and an analyte sensing layer are introduced to the external surface of the MOF. The sensor is analyzed by the full-vector finite element method (FEM) and the wavelength and amplitude interrogation methods are adopted to evaluate the sensing characteristics. Our analysis reveals a maximum wavelength sensitivity (WS) of 15,000 nm/RIU, amplitude sensitivity (AS) of 1,603.37 RIU-1, and resolution (R) of 6.67×10−6 RIU in the determination of analyte RIs spanning an ultra-wide range between 1.00 and 1.45. Furthermore, the figure of merit (FOM) and signal-to-noise ratio (SNR) of the sensor are 295.01 RIU−1 and 2.95, respectively. On account of its simple structure, low cost, and industrial compatibility, this multi-functional sensor has tremendous potential in the chemical industry, environmental monitoring, and safety control such as harmful gas monitoring, industrial wastewater and domestic sewage detection.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    0
    Citations
    NaN
    KQI
    []