Alkaline-stable nickel manganese oxides with ideal band gap for solar fuel photoanodes

2018 
Combinatorial (photo)electrochemical studies of the (Ni–Mn)O_x system reveal a range of promising materials for oxygen evolution photoanodes. X-ray diffraction, quantum efficiency, and optical spectroscopy mapping reveal stable photoactivity of NiMnO_3 in alkaline conditions with photocurrent onset commensurate with its 1.9 eV direct band gap. The photoactivity increases upon mixture with 10–60% Ni_6MnO_8 providing an example of enhanced charge separation via heterojunction formation in mixed-phase thin film photoelectrodes. Density functional theory-based hybrid functional calculations of the band edge energies in this oxide reveal that a somewhat smaller than typical fraction of exact exchange is required to explain the favorable valence band alignment for water oxidation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    0
    Citations
    NaN
    KQI
    []