Experimental demonstration of non-bilocality with truly independent sources and strict locality constraints

2019 
The ongoing interest in creating a secure global quantum network culminated recently in the demonstration of transcontinental quantum communication1. There is a pressing need to examine the properties attached to a quantum network architecture from multiple perspectives, including physics foundations2, communication security3, the efficient use of resources and innovative technological applications4,5. Here, we present an experimental realization of a five-node quantum network, in which quantum sources at two nodes deliver entangled photon pairs to three measurement nodes. With relevant events between five nodes separated space-like, we demonstrate violation of the Bell inequality and bilocal inequality6, with the locality, measurement independence and quantum source independence loopholes closed simultaneously in a quantum network. This experimental realization may be valuable for the design and implementation of future quantum networks. A violation of bilocal inequality is demonstrated with two truly independent light sources delivering entanglements to three nodes. To this end, the locality, measurement independence and quantum source independence loopholes are closed simultaneously.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    0
    Citations
    NaN
    KQI
    []