Visualization of Ion Fluxes in Nanopipettes: Detection and Analysis of Electro-osmosis of the Second Kind.

2021 
Nanopipettes are finding increasing use as nano "test tubes", with reactions triggered through application of an electrochemical potential between electrodes in the nanopipette and a bathing solution (bath). Key to this application is an understanding of how the applied potential induces mixing of the reagents from the nanopipette and the bath. Here, we demonstrate a laser scanning confocal microscope (LSCM) approach to tracking the ingress of dye into a nanopipette (20-50 nm diameter end opening). We examine the case of dianionic fluorescein under alkaline conditions (pH 11) and large applied tip potentials (±10 V), with respect to the bath, and surprisingly find that dye ingress from the bath into the nanopipette is not observed under either sign of potential. Finite element method (FEM) simulations indicate this is due to the dominance of electro-osmosis in mass transport, with electro-osmotic flow in the conventional direction at +10 V and electro-osmosis of the second kind acting in the same direction at -10 V, caused by the formation of significant space charge in the center of the orifice. The results highlight the significant deviation in mass transport behavior that emerges at the nanoscale and the utility of the combined LSCM and FEM approach in deepening understanding, which in turn should promote new applications of nanopipettes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    0
    Citations
    NaN
    KQI
    []