Engineered Context-Sensitive Agonism: Tissue-Selective Drug Signaling through a G Protein-Coupled Receptor

2017 
Drug discovery strives for selective ligands to achieve targeted modulation of tissue function. Here we introduce engineered context-sensitive agonism as a post-receptor mechanism for tissue-selective drug action through a G protein-coupled receptor. Acetylcholine M2-receptor activation is known to mediate, among other actions, potentially dangerous slowing of the heart rate. This unwanted side effect is one of the main reasons that limit clinical application of muscarinic agonists. Herein we show that dualsteric (orthosteric/allosteric) agonists induce less cardiac depression ex vivo and in vivo than conventional full agonists. Exploration of the underlying mechanism in living cells employing cellular dynamic mass redistribution identified context-sensitive agonism of these dualsteric agonists. They translate elevation of intracellular cAMP into a switch from full to partial agonism. Designed context-sensitive agonism opens an avenue towards post-receptor pharmacological selectivity, which even works in target tissues operated by the same subtype of pharmacological receptor.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    3
    Citations
    NaN
    KQI
    []