Integrin-based diffusion barrier separates membrane domains enabling the formation of microbiostatic frustrated phagosomes

2018 
Billions of microorganisms live on, and in, the human body. Known as the human microbiome, most of these microscopic hitchhikers are harmless. But, for people with a compromised immune system, common species can sometimes cause disease. For example, the yeast Candida albicans, which colonises between 30 and 70% of the population, is normally harmless, but can switch to a disease-causing version that makes branching structures called hyphae. These hyphae grow fast, piercing and damaging the tissues around them. Immune cells called macrophages usually engulf invading microbes. These cells recognise sugars on the outside of C. albicans, and respond by wrapping their membranes around the yeast, drawing the microorganism in, and sealing it into closed structures called phagosomes. Then, the macrophages fill the phagosomes with acid, enzymes and destructive chemicals, which breaks the yeast down. Yet, C. albicans hyphae grow larger than macrophages, making them difficult to control. Maxson et al. have now tracked the immune response revealing how macrophages try to control large hyphae. The immune cells were quick to engulf C. albicans in its normal yeast form, but the response slowed down in the presence of hyphae. Electron microscopy revealed that the large structures were only partly taken in. Rather than form a closed phagosome, the macrophages made a cuff around the middle of the hypha, leaving the rest hanging out. The process starts with a receptor called CR3, which detects sugars on the outside of the hyphae. CR3 is a type of integrin, a molecule that sends signals from the surface to the inside of the immune cell. A network of filaments called actin assemble around the hypha, squeezing the membrane tight. The macrophage then deploys free radicals and other damaging chemicals inside the closed space. The seal is not perfect, and some molecules do leak out, but the effect slows the growth of the yeast. When a phagosome cannot engulf an invading microbe, a state that is referred to as being “frustrated”, the leaking of damaging chemicals can harm healthy tissues and lead to inflammation and disease. These findings reveal that macrophages do at least try to form a complete seal before releasing their cocktail of chemicals. Understanding how the immune system handles this situation could open the way for new treatments for C. albicans infections, and possibly similar diseases related to “frustrated engulfment” (such as asbestos exposure, where asbestos fibers are also too large to engulf). However, one next step will be to find out what happens to partly engulfed hyphae, and how this differs from the fate of fully engulfed yeast.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    137
    References
    23
    Citations
    NaN
    KQI
    []