Spitzer spectroscopy of infrared-luminous galaxies: Diagnostics of active galactic nuclei and star formation and contribution to total infrared luminosity

2013 
We use mid-infrared (MIR) spectroscopy from the Spitzer Infrared Spectrograph to study the nature of star-formation and supermassive black hole accretion for a sample of 65 IR-luminous galaxies at 0.02 1.2 mJy. The MIR spectra cover wavelengths 5-38 {mu}m, spanning the polycyclic aromatic hydrocarbon (PAH) features and important atomic diagnostic lines. Our sample of galaxies corresponds to a range of total IR luminosity, L{sub IR} = L(8-1000 {mu}m) = 10{sup 10}-10{sup 12} L{sub Sun} (median L{sub IR} of 3.0 Multiplication-Sign 10{sup 11} L{sub Sun }). We divide our sample into a subsample of galaxies with Spitzer Infrared Array Camera 3.6-8.0 {mu}m colors indicative of warm dust heated by an active galactic nucleus (AGN; IRAGN) and those galaxies whose colors indicate star-formation processes (non-IRAGN). Compared to the non-IRAGN, the IRAGN show smaller PAH emission equivalent widths, which we attribute to an increase in mid-IR continuum from the AGN. We find that in both the IRAGN and star-forming samples, the luminosity in the PAH features correlates strongly with [Ne II] {lambda}12.8 {mu}m emission line, from which we conclude that the PAH luminosity directly traces the instantaneous star-formation rate (SFR) in both the IRAGN andmore » star-forming galaxies. We compare the ratio of PAH luminosity to the total IR luminosity, and we show that for most IRAGN star-formation accounts for 10%-50% of the total IR luminosity. We also find no measurable difference between the PAH luminosity ratios of L{sub 11.3}/L{sub 7.7} and L{sub 6.2}/L{sub 7.7} for the IRAGN and non-IRAGN, suggesting that AGN do not significantly excite or destroy PAH molecules on galaxy-wide scales. Interestingly, a small subset of galaxies (8 of 65 galaxies) show a strong excess of [O IV] {lambda}25.9 {mu}m emission compared to their PAH emission, which indicates the presence of heavily-obscured AGN, including 3 galaxies that are not otherwise selected as IRAGN. The low PAH emission and low [Ne II] emission of the IRAGN and [O IV]-excess objects imply the IR luminosity of these objects is dominated by processes associated with the AGN. Because these galaxies lie in the ''green valley'' of the optical color-magnitude relation and have low implied SFRs, we argue their hosts have declining SFRs and these objects will transition to the red sequence unless some process restarts their star-formation.« less
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    17
    Citations
    NaN
    KQI
    []