Melatonin stabilizes age-dependent alterations in erythrocyte membrane induced by 'Artificial Light at Night' in a chronodisrupted model of rat.

2021 
Abstract Growing evidence has shown that Artificial light at night (ALAN) is one of the threatening risk factors which disrupt circadian homeodynamics of cellular processes. The chronobiological role of melatonin seems to represent an important aspect of its contribution to healthy aging. In the present study, we examined the age dependent effect of melatonin on erythrocyte membrane transporters and oxidative stress biomarkers against ALAN to understand the degree of photo-oxidative damage in chronodisrupted rat model. Young (3 months) and old (24 months) male Wistar rats were subdivided in the following four young groups (n = 4) ; (i) control (ii) melatonin (10 mg/kg) (iii) ALAN (500 lux) (iv) ALAN (500 lux) + melatonin (10 mg/kg) and four old groups (n = 4) ; (v) control (vi) melatonin (10 mg/kg) (vii) ALAN (500 lux) (viii) ALAN (500 lux) + melatonin (10 mg/kg) to the experimental conditions for 10 days. Our findings demonstrated that ALAN significantly enhanced erythrocyte membrane lipid hydroperoxides (LHPs), protein carbonyl (PCO) while reduced total thiol (T-SH), and sialic acid (SA) level with higher amplitude in old ALAN group is restored by exogenous supplementation of melatonin. Activity of membrane transporters, sodium potassium ATPase (NKA) and plasma membrane calcium ion ATPase (PMCA) is significantly reduced meanwhile sodium hydrogen exchanger (NHE) activity is enhanced under the influence of ALAN with higher extent in old groups is effectively ameliorated by melatonin treatment. Further melatonin reduced osmotic fragility of erythrocyte in both young and old rats. It has been concluded from results that ALAN provoked redox insult and disrupt transporters activity more prominently in erythrocyte membrane of aged groups. Exogenous supplementation of melatonin is one of the possible therapeutic approaches to reinforce circadian modulations against ALAN in aged populations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    78
    References
    0
    Citations
    NaN
    KQI
    []